AI Chip Providers Comparison

Compare AI chip and accelerator providers - GPU/TPU performance, power efficiency, memory, software ecosystem, and pricing.

Last updated: 2025-05-01

FeatureNvidia B200Nvidia B200NvidiaAMD MI300XAMD MI300XAMDIntel Gaudi 3Intel Gaudi 3IntelGoogle TPU v5pGoogle TPU v5pGoogleApple M4 UltraApple M4 UltraAppleQualcomm Cloud AI 100Qualcomm Cloud AI 100QualcommCerebras WSE-3Cerebras WSE-3Cerebras
General
HeadquartersSanta Clara, CASanta Clara, CASanta Clara, CAMountain View, CACupertino, CASan Diego, CASunnyvale, CA
Founded1993196919681998197619852016
Company TypePublic (NASDAQ: NVDA)Public (NASDAQ: AMD)Public (NASDAQ: INTC)Public (NASDAQ: GOOGL)Public (NASDAQ: AAPL)Public (NASDAQ: QCOM)Private (~$4B valuation)
Market Cap (Approx.)(?)~$2.8T+~$200B+~$90B~$2.2T+~$3.5T+~$190B+~$4B (private valuation)
Primary AI FocusData center training & inference GPUsData center GPUs & CPUsAI accelerators & CPUsCloud TPU acceleratorsOn-device Neural EngineEdge & mobile AI inferenceWafer-scale AI training
Latest AI Chip Specifications
Latest AI ChipB200 (Blackwell)Instinct MI300XGaudi 3TPU v5pM4 Ultra (Neural Engine)Cloud AI 100 UltraWSE-3 (Wafer-Scale Engine 3)
ArchitectureBlackwellCDNA 3Habana Labs customCustom ASIC (SparseCore + MXU)Apple Silicon (Neural Engine 16-core)Kryo + Hexagon NPUWafer-Scale Engine
Process NodeTSMC 4NP (4nm)TSMC 5nm + 6nm (chiplet)TSMC 5nmCustom (not publicly disclosed)TSMC 3nm (N3B)TSMC 7nm (Samsung 4nm for Snapdragon)TSMC 5nm
Transistor Count208 billion153 billion (combined chiplets)Not disclosedNot publicly disclosedNot disclosed (M4 Ultra est. ~50B+)Not disclosed4 trillion (wafer-scale)
Die Size814 mm²Multiple chiplets (total ~750 mm²)Not disclosedNot disclosedNot disclosedNot disclosed46,225 mm² (full wafer)
Chip TypeGPUGPU (chiplet design)ASIC (AI accelerator)ASIC (TPU)SoC (integrated Neural Engine)ASIC / SoCWafer-scale ASIC
AI Performance
FP8 Performance (Training)(?)9 PFLOPS (per GPU)2.6 PFLOPS1.835 PFLOPS459 TFLOPS per chipN/A (not designed for training)N/A125 PFLOPS (per WSE-3 system)
FP16 / BF16 Performance(?)4.5 PFLOPS1.3 PFLOPS1.835 PFLOPS (BF16)459 TFLOPS (BF16 per chip)~27 TFLOPS (GPU portion of M4 Ultra)~400 TOPS (INT8 optimized)62 PFLOPS
INT8 Inference Performance(?)18 PFLOPS5.2 PFLOPS3.67 PFLOPS~918 TOPS per chip38 TOPS (Neural Engine)400 TOPS250 PFLOPS
FP4 Performance(?)18 PFLOPSNot supported (MI300X gen)Not supportedNot disclosedNot supportedNot supportedNot disclosed
Sparsity Support(?)
Key Use CaseTraining + Inference (data center)Training + Inference (data center)Training + Inference (data center)Training + Inference (Google Cloud)On-device inference (mobile/desktop)Edge inference + mobile AILarge-scale training (data center)
Memory Specifications
Memory TypeHBM3eHBM3HBM2eHBM (integrated on-package)Unified Memory (LPDDR5X)LPDDR5XOn-chip SRAM (44 GB)
Memory Capacity192 GB HBM3e192 GB HBM3128 GB HBM2e95 GB HBM per chipUp to 192 GB unified memoryUp to 128 GB (system LPDDR5X)44 GB SRAM (on-chip)
Memory Bandwidth8 TB/s5.3 TB/s3.7 TB/s4.8 TB/s per chip~800 GB/s (unified memory)~134 GB/s21 PB/s (on-chip SRAM bandwidth)
ECC Memory Support
Power & Efficiency
TDP / Power Consumption(?)1,000W750W900W~250-300W per chip (estimated)~60W (entire M4 Ultra SoC)75W (Cloud AI 100 Ultra)~23,000W (full CS-3 system)
Performance per Watt (FP16)(?)~4.5 TFLOPS/W~1.7 TFLOPS/W~2.0 TFLOPS/W~1.5-1.8 TFLOPS/W (estimated)~0.45 TFLOPS/W~5.3 TOPS/W (INT8 optimized)~2.7 TFLOPS/W
Cooling RequirementLiquid cooling recommendedLiquid cooling recommendedAir or liquid coolingCustom Google DC coolingPassive / fan (consumer)Air cooled (fanless possible)Custom liquid cooling (CS-3)
Software Ecosystem
Primary AI FrameworkCUDA / cuDNNROCm / HIPoneAPI / Habana SynapseAIJAX / TensorFlow (XLA)Core ML / MLXQualcomm AI Engine / SNPECerebras Software Platform (CSoft)
PyTorch SupportVia MLX (PyTorch-like API)Partial (ONNX export)
TensorFlow SupportVia Core ML conversionVia ONNX / TFLite
JAX SupportExperimental
Ecosystem Maturity(?)Industry-leading (CUDA dominance)Maturing (ROCm catching up)Developing (Gaudi ecosystem growing)Mature (for Google Cloud users)Growing (MLX gaining traction)Niche (edge/mobile focused)Specialized (wafer-scale focused)
Developer Community Size(?)Largest (millions of CUDA developers)Growing (~100K+ ROCm developers)ModerateLarge (GCP/TensorFlow community)Large (iOS/macOS developers)Moderate (mobile developers)Small (specialized HPC/AI)
Interconnect & Scalability
Chip-to-Chip InterconnectNVLink 5 (1.8 TB/s bidirectional)Infinity Fabric (896 GB/s)Intel on-package interconnectICI (Inter-Chip Interconnect)UltraFusion (2.5 TB/s die-to-die)N/A (standalone accelerator)SwarmX fabric
Multi-Node NetworkingNVLink Switch + InfiniBand / EthernetInfinity Fabric + RoCE / InfiniBandEthernet (Gaudi integrated RoCE)ICI 3D torus topology (up to 8960 chips)Thunderbolt / Not designed for clustersPCIe / EthernetMemoryX + SwarmX (up to 2048 CS-3s)
Max GPU/Chip Cluster Scale(?)576 GPUs (GB200 NVL72 superpod x8)Thousands (via InfiniBand)4096 Gaudi 3 (SuperPod equivalent)8,960 chips (TPU v5p pod)Single machine onlyRack-scale (8-16 cards)2,048 CS-3 systems (Condor Galaxy)
PCIe InterfacePCIe 5.0 x16PCIe 5.0 x16PCIe 5.0 x16N/A (custom interconnect)N/A (integrated SoC)PCIe 4.0 x16Custom (SwarmX interface)
Cloud Availability
AWS
Google Cloud (GCP)
Microsoft Azure
Oracle Cloud (OCI)
CoreWeave / GPU CloudsLimited
On-Premise / Purchasable
Pricing
Chip / Card MSRP(?)~$30,000-$40,000 (B200 estimated)~$10,000-$15,000~$15,000-$20,000 (estimated)Not sold (cloud-only)$3,999-$7,999 (Mac Studio w/ M4 Ultra)~$5,000-$15,000 (Cloud AI 100 cards)~$2-3M per CS-3 system
Cloud Instance Pricing (per hr)(?)$2-$4/hr (H100), ~$5-8/hr (B200 est.)~$1.50-$3.00/hr (MI300X Azure)~$3.50/hr (Gaudi 2 on AWS; Gaudi 3 TBD)~$3.22/hr (TPU v5p per chip)N/A (no cloud offering)N/A (mostly edge deployment)Custom pricing (contact sales)
Price-Performance Ratio(?)Premium (best performance, highest cost)Value (strong performance, lower cost)Competitive (targeting cost-sensitive buyers)Competitive (for GCP workloads)Best value for on-device AIBest value for edge inferencePremium (specialized large-model training)
Next Generation (Upcoming)
Next-Gen ChipB300 / GB300 (Blackwell Ultra, H2 2025)MI350X (CDNA 4, late 2025)Gaudi 4 (Falcon Shores, 2025-2026)TPU v6e (Trillium, 2025)M5 Ultra (Neural Engine, 2025-2026)Next-gen Cloud AI (2025-2026)WSE-4 (expected 2026)
Expected Improvement~1.5x inference over B200, FP4 native~3.5x AI inference over MI300XUnified GPU + accelerator architecture~4.7x training throughput improvement over v5eImproved Neural Engine, 3nm enhancedHigher INT8 efficiency, edge AI focusLarger wafer, higher transistor density
Process Node (Next Gen)TSMC 4NP enhancedTSMC 3nmIntel 18A / TSMC 3nmNot disclosedTSMC N3E / N2TSMC 3nm or Samsung 3nmTSMC 3nm (expected)